Rough Book

random musings of just another computer nerd

Tag: project

CherryBlossom

I’ve created a project page for the CherryBlossom programming language. You can check it out here. The interpreter is written in perl.

Introducing CherryBlossom

Over the past month, I’ve been working on a new project. It’s called CherryBlossom, and it’s a way to write programs using haikus. Strictly speaking, CherryBlossom is a brainfuck analog. I actually spent more time writing the obligatory “Hello World” program in CherryBlossom than I did writing the interpreter for the language. The idea behind CherryBlossom is simple. Brainfuck instructions are mapped to words that convey the essence of the Brainfuck instruction. Of course, this is a little subjective and also a little abstract.

Ultimately, it serves as a way to make program code not just functional, but beautiful and artistic. Thus, we introduce a new criteria to programming. Your code must not only be elegant algorithmically, but must also be poetic and artistic (also, since program code consists of haikus, you need to represent your code in sets of 3 lines with the first and last lines having 5 syllables, and the second line 7. That is, conforming to haiku rules). CherryBlossom serves to blend the programmer and the poet into one entity (hopefully with amazing results).

Here is an example of “Hello World!” in CherryBlossom. I have opted to use a spruced up div tag instead of enclosing my beautiful poem in soulless sourcecode tags.
Read the rest of this entry »

A brainfuck interpreter in bAdkOde

A few days before I left India, I started writing a brainfuck interpreter in bAdkOde. I finished implemented all the instructions, excepting for looping. I actually finished the code (and fixed all bugs) while I was in the air, flying from Dubai to Los Angeles. Emirates Airlines has power-plugs for your laptop on the seat. It’s pretty sweet!

An interesting thing I noticed was that I couldn’t perfectly emulate the input instruction. I’m feeding the brainfuck code to the interpreter from STDIN and so that might be the problem. I’ve noticed that brainfuck interpreters written in brainfuck have the same problem. You have to specify program input before hand. This is what I’ve decided to do. You write brainfuck code, and then mark the end of program code by an exclamation mark. After the exclamation mark, you provide any input, and then mark the end of input by another exclamation mark. Programs that do not have any input end with two exclamation marks. After I finished writing the interpreter, I commented it. While I was doing this, I noticed a lack of labels in bAdkOde. So, I decided to update the interpreter to include them. Speaking of which, I really ought to rewrite the interpreter sometime…

Anyway, here is the code to the interpreter. I’m providing a link to it, because the commented version is rather large. But here’s the expanded (without labels or macros), unformatted version:

>3a>1b{!b?b>b[a)b-91b{=b+1[b>1b}+91b-93b{=b-1[b>1b}+93b(b+1a-33b}>0[a+1a>2b>a[b>1b{!b?b>b[a+1a-33b}>1b>a[b>0a>[aa>ab{=a>1a>[ab>3a{![a)a>[aa-62a{=a+1b-30000b)a>ba{+b>1b>[bb)b>0b-1b>0a}{-a+30000b)b>0a}(b(a+62a}+62a-60a{=a-1b)a>1a>[aa-ab>ba{-b>1a>[aa+30000a>ab)b>0b>0a-1a}{+a>1a>[aa+ab)b>0a-1a}(b(a+60a}+60a-43a{=a+1[b+43a}+43a-45a{=a-1[b+45a}+45a-46a{=a"[b+46a}+46a-44a{=a)a>2a>[aa>[a[b>2a+1[a(a+44a}+44a-91a{=a(a)b)a>[bb{=b>0b>1[b{![b(a+1a)a>[aa)a-91a{=a+1[a>1a}+91a-93a{=a-1[a>1a}+93a(a}(a-1a)a>1b}(a(b)a+91a}+91a-93a{=a(a)b)a>[bb{!b>0b>0[b-1[b{![b(a-1a)a>[aa)a-91a{=a+1[a>1a}+91a-93a{=a-1[a>1a}+93a(a}>0b}(a(b)a+93a}+93a(a+1a}>1a>0b}{!b"85"110"109"97"116"99"104"101"100"32"98"114"97"99"107"101"116"115>0b}

Also, this is additional proof for Turing Completeness. Yes, I’m a nerd! 🙂

bAdkOde is Turing Complete

In my previous post, I suggested that bAdkOde might be Turing Complete by writing a quine. One of the ways to actually prove Turing Completeness is to try and write an interpreter for another Turing-Complete language in bAdkOde. Another approach involves providing a direct translation from another Turing-Complete language into bAdkOde. Here, I prove the Turing Completeness of bAdkOde by providing a direct translation from Brainfuck into bAdkOde.
Read the rest of this entry »

A bAdkOde quine (which suggests that bAdkOde is Turing Complete)

On the bAdkOde project page, I mentioned that I didn’t know whether bAdkOde is Turing Complete (although I suspected it). I also mentioned that if I was able to write a quine in bAdkOde, then it would probably mean that it is Turing Complete. I was able to write one after going through this excellent quine tutorial by Dave Cope.
Read the rest of this entry »

if-else in bAdkOde

I was talking to my CSE 200 (my first CS class at ASU) professor Richard Whitehouse about bAdkOde and he (rightly) pointed out that it didn’t have an explicit selection statement. He also said that unless I wanted it to be really ugly I’d need to have a selection statement. However, since I was going for ugly I figured that I’d just emulate the operation of an if and an if-else with the existing while statement.

If you know assembly, then you know that a while is simply a set of statements wrapped with a conditional branch at the top and a backwards branch at the bottom (or in other words, an if with a goto at the end. A do-while is simply a set of statements with a conditional branch (at the bottom) that branches to the top of the loop. In fact, in assembly programming there really aren’t any for loops or while loops. These keywords are simply abstractions and syntactic sugar. In bAdkOde, you can implement an if with the existing while statement if you explicitly make it break out of the loop. For example, let’s say that we want to check whether the user entered the character “0”:

?a
-48a
# print a line break
"10
# if a is zero
{=a
 # print the string "zero"
 "122"101"114"111"10
 # set the a register to a non-zero value so that we can break out of the loop
 >1a
}

I knew there was a way to implement an if-else with just while statements but I didn’t remember exactly how. Then my friend and co-worker Juan reminded me that I needed two variables. In our case, we need to use two registers:

?a
-48a
# copy the value of a into b
>ab
"10
# if a is zero
{=a
 # print the string "zero"
 "122"101"114"111"10
 # set the a register to a non-zero value so that we can break out of the loop
 >1a
}
# if the top loop failed, it means that b (which holds the same value as a) is 
# non-zero and so we can enter this block.
# if the top loop was successful, it means that b (which holds the same value
# as a) is zero and so we won't enter this block. Hence, the second block acts
# as an 'else'
{!b
 # print the string "non-zero"
 "110"111"110"45"122"101"114"111"10
 # zero out the b register
 >0b
}

Yes, quite ugly. But that’s what I’m going for! 🙂

bAdkOde: An Esoteric Language

I’ve added another project to the projects page. It’s called bAdkOde, an interpreter for an esoteric language that I designed. The very first incarnation of bAdkOde was written in Java and I actually posted it (or made a blog entry about it) over 8 years ago. For some reason I took it down. Probably because I stopped working on it. Anyway, I redesigned the language and wrote an interpreter for it in Perl about 4 or 5 years ago. I finally got around to posting it. Check out the project page for more details. Let me know what you think.

About Me and Projects

I finally got around to adding pages to my blog. I’ve added an “About Me” page and a “Projects” page. The “Projects” page is similar to the one I had on the old site. I’ve migrated one project (Sulekha) over. Will be moving the second one (FXCalendar) over soon and I’m also going to try and add another one to the list.

Sulekha: A text-based Markov-chain generator

I’ve finished work on the projects page. Sometimes I’ll have a passing interest in something that leads me to write some code for fun. Yes, you read right. I like to code… for fun. Anyway, this is something I’ve done ever since I started programming way back in 1991. I’ve written a bunch of cool little programs over the years. Most of these have been throwaway scripts that I wrote just to “see what would happen”. A few of these, however, have had some serious effort put into them. I’ve decided to showcase these on my site. Hopefully people will find them interesting :).

The project I’ve just uploaded is called Sulekha, and is a text-based Markov-chain generator. You can check it out here. The comments for this journal entry are mirrored on the Sulekha project page, so anything you post here will be visible there (and vice versa). Let me know what you think. Oh, and it’s interactive so you can generate your own text-based Markov-chains too!

New Interface and bAdkOde

I changed the interface again. No more frames! There actually two index files up now. The other one will run on IE only. Anyway, the big thing is that I put something new up. I put up my pet project – bAdkOde. It is an interpreter I am working on. It’s a VERY early beta and you can check it out. I have provided a link. Hope you like it!

All original content on these pages is fingerprinted and certified by Digiprove
%d bloggers like this: