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Abstract—Cyber adversaries employ a variety of malware and
exploits to attack computer systems, usually via sequential or
“chained” attacks, that take advantage of vulnerability depen-
dencies. In this paper, we introduce a formalism to model such
attacks. We show that the determination of the set of capabilities
gained by an attacker, which also translates to extent to which
the system is compromised, corresponds with the convergence
of a simple fixed-point operator. We then address the problem
of determining the optimal/most-dangerous strategy for a cyber-
adversary with respect to this model and find it to be an NP-
Complete problem. To address this complexity we utilize an A*-
based approach with an admissible heuristic, that incorporates
the result of the fixed-point operator and uses memoization
for greater efficiency. We provide an implementation and show
through a suite of experiments, using both simulated and actual
vulnerability data, that this method performs well in practice
for identifying adversarial courses of action in this domain. On
average, we found that our techniques decrease runtime by 82%.

Index Terms—cybersecurity, cyber-attack modeling, adversar-
ial reasoning

I. INTRODUCTION

Contemporary cyber-threat actors rely on a variety of mal-
ware and exploits purchased through various channels such as
the darkweb. These exploits are usually part of sophisticated
“exploit kits” that target vulnerabilities and leverage their
interdependencies to form “chained attacks”. In this paper, we
introduce a formalism that allows modeling adversarial-actions
against a system with possibly-interdependent vulnerabilities
using associated exploits. We present an operator that we show
has a least fixed-point, which corresponds to the precise set of
capabilities obtained by the attacker under our framework and
is efficient to compute. We address the problem of determining
the optimal/most-dangerous strategy for a cyber-adversary
with respect to this model and find it to be NP-Complete.
We also present a suite of provably-correct algorithms based
on A* search to solve this problem. We develop an admissible
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heuristic, and show how we enhance algorithm performance
by incorporating fixed-point operator results and by using
a memoization approach that we also introduce. With these
techniques, we see an average performance-improvement of
82% over standard A∗. We demonstrate the performance of
these algorithms and the validity of our model through a suite
of experiments using both simulated and actual vulnerability-
data. This paper also includes a brief overview of related work.
Additional supporting material, results, and full proofs can be
found online1.

II. MODEL

In this section, we define a formal mathematical-model to
capture the semantics of chained attacks that leverage vulner-
ability and exploit interdependencies. The model assumes that
there is an attacker with an initial set of “capabilities”. These
capabilities represent system functionality that the attacker has
access to, and also represent different actions that the attacker
can take on or against the system. Using different sets of
initial capabilities, we can model various attacker-types, such
as unauthenticated/authenticated remote-attackers, local users,
etc. The set of initial capabilities can also reflect prior knowl-
edge gained by scanning or profiling a target system. Using
their capabilities the attacker employs a sequence of exploits,
where each subsequent exploit uses capabilities provided by
a previous one. Through this iterative approach, the attacker
gradually compromises the system until they have achieved
their objective.

We first define a set V , which is the set of all vulnerabilities,
and a set C, which is the set of capabilities supported by
a component on the information systems network. We use
the notation 2C to represent the powerset of C. Following
the intuition of [1]–[5], we assume each exploit has two sets
of capabilities: Cr representing preconditions and Cg repre-
senting postconditions. These capabilities can represent high-
level interactions (e.g., HTTP requests), local commands on
the system, and malicious capabilities gained by successfully
using an exploit:

Definition 1.1. Given a set Cr ⊆ C of capabilities required
to use an exploit for a vulnerability v ∈ V , and a set Cg ⊆ C
of capabilities gained by using that exploit, the set of exploits
E is a set of tuples of the form (Cr, Cg, v).
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This formalism captures the necessary conditions required
to use a particular vulnerability exploit, and also models
what the attacker gains by using the exploit. It also lets us
model the attack surface of the system. For example, we can
model an “exploit” that grants privileged capabilities with the
precondition that the user is able to escalate their privilege.
Similarly, a “passive” attack-surface can also be modeled as
an “exploit” with no required capabilities; this is useful to
model services running on a system, such as web servers.
We acknowledge that deriving these capability sets from CVE
descriptions is challenging. However, there are approaches [6],
[7] that have solved this problem with some success, which
can be easily adapted to work with our model. Note that it is
possible for multiple exploits to target a single vulnerability.

We now define an exploit chain as follows:

Definition 1.2. Given some set E′ ⊆ E, and initial set of
capabilities C0 ⊆ C, an exploit chain (denoted EC0,E′ ) is a
subset of E′:
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An attacker can use different exploit chains to achieve
various goals; there may even be multiple exploit-chains that
lead to the same goal. By accounting for all these chains, we
can identify the complete set of capabilities that the attacker
can gain; we call this the obtained set of capabilities. The
intuition is that this set establishes an upper bound on the set
of capabilities an attacker can gain, for a given set of initial
capabilities and exploits. It easily translates to the maximum
amount of damage an attacker can cause to the system.

Definition 1.3. Given a set of exploits E′ ⊆ E and a set of
initial capabilities C0 ⊆ C, the obtained set of capabilities
(denoted C∗E′,C0

) consists of all capabilities in C0, in addition
to any capability c ∈ C for which there exists an exploit chain
EC0,E′ leading to c, and does not contain any capability c′ ∈ C
such that c′ 6∈ C0, and for which there exists no exploit chain
EC0,E′ leading to c′.

We now design an operator that models exploit application
and prove that it has a fixed point, that corresponds to the
obtained set of capabilities. We also show that the operator
converges in a polynomial number of steps and investigate
some other useful properties. A key assumption that we make
here is that exploit application is monotonic; applying an
exploit does not remove a previously-obtained capability. This
assumption is quite common in related work [2], [8], [9] in this
area. In [10], the authors also note that non-monotonic attacks
can be treated as monotonic, if certain low-level details are
ignored. As such information is not provided, or difficult to
obtain from CVE and exploit descriptions, the monotonicity
assumption is reasonable.

Definition 1.4. We introduce the notion of exploit application
via an “exploit-application operator”:

i. Given E′ ⊆ E and C0 ∈ 2C we define the exploit-
application operator TE′ : 2C → 2C as:

TE′(C0) = C0 ∪
⋃
{Cg | (Cr, Cg, v) ∈ E′ ∧ Cr ⊆ C0}

ii. Given some i ∈ N, we define the ith application of TE′

on C0 ⊆ C as:

TE′↑i(C0) = TE′(TE′↑i−1(C0))

where:
TE′↑1(C0) = TE′(C0)

iii. T∗E′ , the fixed point of TE′ is defined as:

T∗E′(C0) = TE′↑i(C0)

where:
TE′↑i(C0) = TE′↑i+1(C0)

In the above definition, item (i) describes a single appli-
cation of the operator, which augments the attacker’s initial
capabilities using Cg from only those exploits where Cr ⊆ C0.
Item (ii) models the iterative behavior of the attacker; on each
subsequent application of the operator, it uses the augmented
capability-set from the previous application, potentially allow-
ing the attacker to exploit additional vulnerabilities. Item (iii)
defines the end of this iterative process by defining the fixed-
point of the operator, implying that the iterative process must
converge, or in real-world terms, the attacker stops when they
cannot gain any more capabilities. We can easily prove that
this fixed-point exists using lattice theory by first making the
following observation about 2C :

Observation 1.1. 〈⊆, 2C〉 is a partial ordering and 2C speci-
fies a complete lattice.

This is straightforward as ⊆ is clearly reflexive, transitive,
and antisymmetric. Further, the set 2C has a clear top element
(set C) and a bottom element (the empty set). As C is simply a
set of elements, the powerset as under the ordering relationship
specified by ⊆ is the classic example of a complete lattice.

Theorem 1.1. TE′ has a least fixed point.

The set of capabilities at the least fixed-point represents the
complete set of capabilities that the attacker can gain for a
given E′ and C0. This is useful because this set corresponds
to the obtained set of capabilities (Definition 1.3):

Theorem 1.2. Given an E′ ⊆ E and C0 ∈ 2C with obtained
set of capabilities C∗E′,C0

, T∗E′(C0) ⊆ C∗E′,C0
and T∗E′(C0) ⊇

C∗E′,C0
.

A useful property of the operator is that it also identifies
mutually disjoint exploit-sets associated with each application:

Definition 1.5. Given a E′ ⊆ E and C0 ∈ 2C with an i ∈ N
such that T∗E′(C0) = TE′↑i(C0), we can identify the set of



exploits used at any j ∈ N where j ≤ i as:

E′j = {(Cr, Cg, v) ∈ E′ \
j−1⋃
k=1

E′k | Cr ⊆ TE′↑j−1(C0)}

where:
E′1 = {(Cr, Cg, v) ∈ E′ | Cr ⊆ C0}

We can use this to show that the operator converges in a
polynomial number of steps:

Proposition 1.1. Given E′ ⊆ E and C0 ∈ 2C with i ∈ N
such that T∗E′(C0) = TE′↑i(C0), i ≤ |E′|.

Exploit sets identified in Definition 1.5 have some interest-
ing properties. Observe that the operator effectively “sorts”
E′ into an ordered sequence of subsets using dependency
information; an exploit in E′j will have required capabilities
provided by at least one exploit from E′j−1. This gives us
information about the structure of possible exploit-chains as
we now have a general idea about the order in which we expect
attackers to use certain exploits.

We now investigate the complexity of calculating the fixed
point. Observe that for a given C0 and E′, the complex-
ity of calculating TE′(C0) is Θ(|E′|) as we iterate over
the entire set. Given a set E′′ ⊇ E′, observe that we
can calculate TE′′(C0) using TE′(C0) via the expression
TE′(C0) ∪ TE′′\E′(C0). Hence, we can state the following
proposition:

Proposition 1.2. Given E′′ ⊆ E, E′ ⊆ E and C0 ∈ 2C , if
E′ ⊆ E′′ then TE′(C0) ⊆ TE′′(C0)

We also extend this memoization to the calculation of the
fixed-point. Note that the complexity here is Θ(k |E′|), where
k is the number of applications taken to reach the fixed-point
(1 ≤ k ≤ |E′|). As before, given a set E′′ ⊇ E′, we can
intuitively see that it is possible to use the result of T∗E′(C0)
when calculating T∗E′′(C0). Hence:

Proposition 1.3. Given E′′ ⊆ E, E′ ⊆ E and C0 ∈ 2C , if
E′ ⊆ E′′ then T∗E′(C0) ⊆ T∗E′′(C0)

We will now try to express T∗E′′(C0) in terms of T∗E′(C0).
Since we do not necessarily use every exploit in E′ when
calculating T∗E′(C0), we cannot exclude E′ outright as with
the memoization of TE′′(C0). This is because exploits in
E′′ \ E′ may provide capabilities that can make previously
unused exploits from E′ applicable. Hence we must exclude
only those exploits that were used to calculate T∗E′(C0). We
define these exploits as follows:

Definition 1.6. Given a E′ ⊆ E and C0 ∈ 2C , with an
i ∈ N such that T∗E′(C0) = TE′↑i(C0), the complete set
of applicable exploits Euse is defined as:

Euse =
⋃

1≤j≤i

E′j (Definition 1.5)

We can now express T∗E′′(C0) in terms of T∗E′(C0) as
T∗E′′(C0) = T∗E′′\Euse

(T∗E′(C0)). Notice that the runtime is

now Θ(k′ |E′′ \ Euse|) instead of Θ(k |E′′|) (where k′ ≤ k).
We now address the problem of identifying the attacker’s

strategy. Attackers decide what exploits to use by profiling a
system, or by having knowledge about the kinds of systems
used in a network. With this information, they can use public
vulnerability databases to look up associated vulnerabilities
providing specific capabilities. However, the attacker may not
have the expertise necessary to exploit such vulnerabilities and
could consider purchasing exploit kits from the darkweb. Note
that by using the darkweb as a resource, it is possible for the
attacker to purchase exploit-kits that target undisclosed (zero-
day) vulnerabilities as well. Both expertise and financial cost
can be expressed using a cost function:

Definition 1.7. Given a set of exploits E, we define a cost
function cost : E → R+ that associates a real-valued cost
with each exploit.

For simplicity, we use a single cost-function throughout this
paper, but all of the results can be extended for separate ones.
Cost functions can also take into account other factors, such
as the probability that a vulnerability has been patched, as
attackers may not have perfect knowledge about a system. This
information can be used by the attacker to “weight” the costs
of associated exploits in order to factor in this probability. In
ongoing work, we are currently looking at data-driven cost-
functions [11], [12] as well.

Since attackers do not have unlimited resources, it makes
sense to define a budget. Attackers would prefer to use a set of
exploits that let them achieve their goal without exceeding this
budget. This is the attacker’s preferred strategy and is defined
as follows:

Definition 1.8. Given the attacker’s budget b ∈ R+, set of
desired capabilities Cd, and initial set of capabilities C0, the
preferred attack-strategy PAS(C0, Cd) is the set of exploits
E′ satisfying the following conditions:
• Coverage: T∗E′(C0) ⊇ Cd

• Cost:
∑

e∈E′ cost(e) ≤ b

In the optimization variant of the preferred attack-strategy
problem, the quantity

∑
e∈E′ cost(e) is minimized, and the

associated strategy is called an optimal strategy.
Finding a preferred attack-strategy is NP-complete, and is

easily shown by a reduction from set cover.

Theorem 1.3. Finding a preferred attack-strategy is NP-
complete.

III. ALGORITHMS

In this section we examine algorithms to solve the preferred
attack-strategy problem. Our baseline approach used depth-
first search across the strategy-space. A major shortcoming
with this approach is that it has exponential-time complexity
and an optimal solution is not guaranteed. It is also obvious
that the algorithm explores paths that are unproductive or
invalid; for example, paths containing exploits whose precon-
ditions have not been met, or exploits that provide capabilities



the attacker has already obtained. To address these issues we
enable more-efficient searches for attacker strategies through
the following improvements that maintain correctness:

1. We correctly prune the available exploits at each step
and employ the use of an admissible heuristic-function
by adopting A∗ search.

2. We further improve A∗ search by using the results of the
fixed-point operator.

A. Pruning Exploits

The depth-first search approach considers exploits that need
not or cannot be part of the solution. To address this problem
we prune the search-tree by discarding such exploits. An
exploit is included and not pruned only if the following
conditions hold:

1. The exploit does not cause the attacker to exceed their
budget.

2. The attacker currently has the required set of capabilities
to apply the exploit.

3. The exploit offers at least one capability that the attacker
does not already have.

The correctness of this pruning technique follows directly from
our original model.

B. PAS-A∗

While pruning helps us address time-complexity and can
provide better solutions than DFS, it still does not guarantee
an optimal solution. To address this issue we use A∗ search
(Algorithm 1). With an admissible heuristic, the tree-search
variant of A∗ is both complete and optimal. A∗ evaluates nodes
by combining g(e), the cost to reach the node, and h(e), the
lower bound of the cost to get from the node to the goal. To
estimate the cost to the goal, we first look at how many desired
capabilities remain to be gained:

Definition 1.9. Given the attacker’s current set of exploits E′,
initial set of capabilities C0, desired set of capabilities Cd,
and the applicable exploit under consideration (Cr, Cg, v), we
define the remaining capabilities as Crem = Cd\T∗E′(C0)\Cg.

These capabilities must come from the set of remaining
applicable exploits, which we define as follows:

Definition 1.10. Given the complete set of exploits E, the
attacker’s current set of exploits E′, and the applicable exploit
under consideration e, we define the remaining set of exploits
as Erem = {(Cr, Cg, v) ∈ E \ E′ \ {e} | Cg ∩ Crem 6= ∅}.

Note that if Erem = ∅ while Crem 6= ∅, it implies that there is
no solution since there are no remaining exploits that provide
any of the remaining desired-capabilities.

We now estimate the cost to the goal by identifying the
lowest-possible cost to gain each remaining capability, and
then summing those costs:

Definition 1.11. Given the node e that represents an applicable
exploit under consideration, the remaining set of capabilities

Algorithm 1 Implementation of PAS-A∗

1: procedure PAS-A∗ (E,C0, Cd, b):
2: function PATH(node):
3: path as SET
4: while node.PARENT 6= ∅ do:
5: ADD(path, node.EXPLOIT)
6: node ← node.PARENT

7: return path
8: function SOLUTION(node):
9: return PATH(node)

10: function ROOT:
11: root as NODE
12: root.PARENT ← ∅
13: root.EXPLOIT ← ∅
14: root.PATHCOST ← 0
15: return root
16: function MAKENODE(parent, e):
17: node as NODE
18: node.PARENT ← parent
19: node.EXPLOIT ← e
20: node.PATHCOST ← parent.PATHCOST + cost(e)
21: return node
22: function PRUNE(parent, e):
23: if parent.PATHCOST + cost(e) > b then:
24: return true
25: else if e.Cr 6⊆ T∗

E′ (C0) then:
26: return true
27: else if e.Cg ⊆ T∗

E′ (C0) then:
28: return true
29: return false
30: function EXPAND(node):
31: children as SET
32: for each e in E \ PATH(node):
33: if not PRUNE(node, e) then:
34: ADD(children, MAKENODE(node, e))
35: return children
36: function REMAININGCAPABILITIES(node):
37: E′ ← PATH(node.PARENT)
38: return Cd \ T∗

E′ (C0) \ Cg

39: function REMAININGEXPLOITS(node, Crem):
40: Erem as SET
41: for each e in E \ PATH(node):
42: if e.Cg ∩ Crem 6= ∅ then:
43: ADD(Erem, e)
44: return Erem
45: function ESTIMATEDCOST(node):
46: Crem ← REMAININGCAPABILITIES(node)
47: Erem ← REMAININGEXPLOITS(node, Crem)
48: return node.PATHCOST + h(Crem, Erem)

49: nodes as PRIORITY-QUEUE ordered by ESTIMATEDCOST
50: ENQUEUE(nodes, ROOT)
51: loop do:
52: if EMPTY(nodes) then:
53: return failure
54: node ← DEQUEUE(nodes)
55: E′ ← SOLUTION(node)
56: if T∗

E′ (C0) ⊇ Cd then:

57: return E′
58: for each child in EXPAND(node):
59: if not EXISTS(nodes, child) then:
60: ENQUEUE(nodes, child)
61: else:
62: existing ← FIND(nodes, child)
63: fexisting ← ESTIMATEDCOST(existing)
64: fchild ← ESTIMATEDCOST(child)
65: if fchild < fexisting then:
66: REPLACE(nodes, existing, child)

Algorithm 2 Implementation of heuristic h

1: function h(Crem, Erem ):
2: h as REAL
3: h ← 0
4: for each c in Crem :
5: hmin ← ∞
6: for each e in Erem :
7: if c ∈ e.Cg then:
8: he ← cost(e) ÷

∣∣e.Cg ∩ Crem
∣∣

9: if he < hmin then:
10: hmin ← he
11: h ← h + hmin
12: return h

Crem, and the remaining set of exploits Erem, the estimated
cost to the goal h : E → R+ is defined as:

h(e) =
∑

c∈Crem

min
{e′∈Erem|c∈Cg}

cost(e)

|Cg ∩ Crem|

where e′ = (Cr, Cg, v)

Theorem 1.4. h(e) is admissible.

Algorithm 2 is an implementation of h(e).



Algorithm 3 Enhanced A∗ (common functions omitted)

1: procedure PAS-ENHANCED-A∗ (E,C0, Cd, b):
2: function PRUNE(parent, e):
3: if e.i < parent.EXPLOIT.i or e.i − parent.EXPLOIT.i > 1 then:
4: return true
5: else if parent.PATHCOST + cost(e) > b then:
6: return true
7: else if e.Cr 6⊆ T∗

E′ (C0) then:
8: return true
9: else if e.Cg ⊆ T∗

E′ (C0) then:
10: return true
11: return false
12: function REMAININGEXPLOITS(node, Crem ):
13: Erem as SET
14: for each e in E \ PATH(node):
15: if e.i ≥ node.EXPLOIT.i and e.Cg ∩ Crem 6= ∅ then:
16: ADD(Erem, e)
17: return Erem
18: 〈Euse, C〉 ← T∗E(C0) . Assume that fixed-point operator returns used exploits.

Implementation is trivial and has been left out for brevity.
19: E ← Euse . Redefine E to include only used exploits.
20: . Remaining code identical to PAS-A∗

C. Enhancing PAS-A∗ using fixed-point operator results

While PAS-A∗ identifies optimal solutions, we can improve
its runtime performance by making use of the fixed-point
operator’s results. Observe that Definition 1.6 lets us identify
the complete set of exploits that an attacker can possibly
use, given their initial set of capabilities. Hence the preferred
strategy can never contain an exploit that exists in E′ \ Euse.
By having PAS-A∗ consider only those exploits in Euse, we
can reduce the search space. Additional improvements can be
gained using Definition 1.5, which identifies the set of exploits
used at each application. By labeling each exploit from Euse

with the application in which it was used, we can prune the
search tree even further. Assume that we are expanding a
node associated with exploit ei, which was used in the ith

application. We can then prune any exploit ej where j < i
or j > i + 1, because a subsequent exploit must have either
been used in the same application as the preceding one, or
in the very next application. We also use this information
to improve heuristic performance by excluding all remaining
exploits that were used in applications earlier than the exploit
under consideration. Algorithm 3 is an implementation of
PAS-ENHANCED-A∗.

D. Improving fixed-point operator performance

We implement fixed-point operator memoization by means
of a trie-based [13] cache. We first associate a unique integer
with each exploit, allowing us to order a set of them consis-
tently. We can then cache the results in a trie (see Figure 1
for an example), giving us lookup time that is linear in the
size of the largest subset of E′ cached so far. Note that in
this approach, we assume that C0 is fixed. While the upper
bound on the operator’s complexity given some arbitrary E′ is
quadratic even with caching, it is effectively linear when used
with algorithms PAS-A* and PAS-ENHANCED-A∗. As the
path to any node in the search tree only consists of applicable
exploits, every exploit is used when calculating the fixed-point
(Euse = E′). Furthermore we grow the path a single exploit at
a time, making the complexity of calculating T∗E′′(C0) (where
E′′ = E′ ∪ {e}) just O(|E′|+ 1) or O(|E′′|).

Fig. 1: Example of a trie used to cache results of the fixed-point
operator.

IV. EXPERIMENTS AND RESULTS

Our experiments were designed to evaluate performance and
to examine the viability of our model and its algorithms in
real-world scenarios. All experiments except one were imple-
mented in Java. The remaining experiment, which analyzed the
performance of our memoization approach, was implemented
in JavaScript on NodeJS. All experiments were executed on
a machine with an Intel Core i7-4770K processor and 24GB
RAM running Linux Mint 18.3.

Fig. 2: Runtime vs. number of exploits for non-memoized and
memoized T∗

E′ .

Our first experiment assesses the impact of memoiza-
tion on T∗E′ . We generated a set of exploits E′ =
{e0, e1, . . . , en} of the form {(∅, {c0}, v0), ({c0}, {c1}, v1),
. . . , ({cn−1}, {cn}, vn)}. We then measured the runtime of
memoized and non-memoized versions of T∗E′ against the
following sequence of subsets of E′: 〈{e0}, {e0, e1}, . . . ,
{e0, e1, . . . , ei}, . . . , {e0, e1, . . . , en}〉. From the results in
Figure 2, it is evident that runtime for the non-memoized
version is quadratic, compared to linear for the memoized
version. This confirms that memoization significantly improves
the performance of T∗E′ .

The next set of experiments use real-world vulnerability
data gathered from the National Institute of Standards and
Technology’s National Vulnerability Database (NIST NVD).
We defined 22 exploits based on 10 Critical Vulnerability
Exploits (CVEs) associated with the Windows 10 operating
system. We chose CVEs that involve a diverse spectrum of
malicious capabilities and also feature a good distribution of
attacker types and complexity levels. The cost of each exploit
was set to the sum of the attack and access complexities



of the associated CVE; these metrics are extracted from the
Common Vulnerability Scoring System (CVSS) base-score
vector reported for each CVE in the NVD. Both types of
complexities are graded as High, Medium, or Low, which we
associated with integer values 3, 2, and 1. We chose these
specific metrics as they describe how easy or difficult it is
to exploit a particular vulnerability. Exploit capability-sets
were defined manually, based on CVE descriptions and CVSS
vector attributes. We also defined four types of attackers:
a remote attacker with remote access to the machine, an
authenticated remote-attacker with remote access and valid
credentials for the machine, a physically-proximate attacker
with physical and network access to the machine, and a local
attacker with physical access and valid credentials for local
use of the machine. Cd for all attackers was defined to contain
the following capabilities: remote code-execution, privilege
escalation, installing a crafted boot-manager, and denial
of service. C0 for each attacker was defined to reflect their
level of access to the machine, with the remote attacker having
the least number of initial capabilities and the local attacker
having the most.

Attacker Type |T∗E(C0)| |E′| Cost
Remote 13 10 20
Remote authenticated 13 8 16
Physically proximate 18 9 15
Local 22 7 11

TABLE I: Number of obtained capabilities, and size and cost of
optimal solution based on attacker type.

Our hypothesis for this experiment was that attackers with
greater initial-access to the system would be able to cause
more damage than those with lower access, given identical sets
of exploits. The results (Table I) clearly validate this hypothe-
sis, as attackers with a greater number, or with more significant
initial-capabilities, obtain a larger set of capabilities. This also
shows that the results of the fixed-point operator are realistic
and match real-world expectations.

The next experiment investigates how the preferred strategy
(as identified by PAS-A∗) varies across attacker types. Each
attacker’s budget was set to be unlimited. The results (Table I)
show that in general, solution costs are inversely proportional
to the number and significance of initial capabilities. This is to
be expected, as attackers with more initial access to a system
would be able to compromise it using fewer resources. These
results provide additional confirmation that the model is able
to produce results that are not only accurate, but also make
sense intuitively and reflect real-world attacker behavior.

The aim of our next experiment was to examine the ef-
fectiveness of our pruning approach by running PAS-DFS
and PAS-DFS-PRUNED against each attacker type, initially
with unlimited budgets. The results (Figure 3) show that while
the average runtime of PAS-DFS-PRUNED is generally not
lower than PAS-DFS, the solutions identified are cheaper
and qualitatively better. The low runtimes of PAS-DFS are
easily explained by the fact that with an unlimited budget, a
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Fig. 3: Box plot of runtimes and solution costs for PAS-DFS and
PAS-DFS-PRUNED, against different attacker types (1000 samples
each) with unlimited budgets. Some outliers excluded for clarity.
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Fig. 4: Mean runtime vs budget for PAS-DFS and
PAS-DFS-PRUNED against different attacker types with restricted
budgets (100 and 1000 samples respectively).

degenerate solution (one that contains all exploits) is likely to
be quickly identified. In particular, note that the average cost
of solutions identified by PAS-DFS is quite close to the total
exploit-cost of 55, showing that a large proportion of solutions
identified include most or all exploits. This is also evidence of
the effectiveness of pruning, as PAS-DFS-PRUNED discards
paths that contain such solutions which, though they provide
the attacker with their desired capabilities, are typically more
expensive as they include redundant or invalid exploits (see
items 2 and 3 in III-A). The runtime advantage of pruning
is more evident if budgets are restricted to be lower than
the total cost of all available exploits. We looked at the
mean runtime as a function of the budget for each algorithm,
against each attacker type, by varying the budget from 55 (the
total cost of all exploits) down to the cost of the optimal
solution for each attacker. We observed that in many cases,
especially as the budgets approached the cost of the optimal
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Fig. 5: Box plot of runtimes for all PAS-A∗ algorithms (memoized
and non-memoized) against different attacker types (1000 samples
each).

solution, PAS-DFS took more than an hour to complete.
Hence we capped the execution time to 20 seconds, which
is an order of magnitude higher than the highest-observed
runtime for PAS-DFS-PRUNED (2 seconds). The results (Fig-
ure 4) clearly show that PAS-DFS-PRUNED is much faster
on average. With restricted budgets that are lower than the
total cost of all available exploits, PAS-DFS cannot identify
degenerate solutions and must therefore explore more, usually
unproductive paths, that PAS-DFS-PRUNED ignores. As the
budget approaches the cost of the optimal solution, the runtime
advantage of PAS-DFS-PRUNED is especially evident. These
results show that our pruning approach significantly lowers the
size of the search space, and helps identify solutions that are
much cheaper and of higher quality than those identified by
PAS-DFS.

In our next experiment, we investigate how memoization
and attacker type affect performance. Attacker budgets were
once again set to be unlimited. As expected, the results (Figure
5) show that memoization improves runtime in all cases;
on average we see a 27% decrease in runtime over non-
memoized implementations. Generally, runtimes also appear
to be directly proportional to the number of initial capabilities.
This is because more initial capabilities allow more exploits
to be applicable, resulting in a larger search-space due to an
increased branching-factor. Finally, we see that the memoized
implementation of PAS-ENHANCED-A∗ performs the best,
with a runtime that is on average 82% lower than standard
A∗ (PAS-A∗ without memoization). When comparing to the
baseline approach (Figures 3 and 4), we can see that with
unrestricted budgets, runtimes for all PAS-A∗ variants are
higher; this is to be expected as there are far more sub-
optimal solutions than optimal ones, and thus it is more

likely that one would be found quickly by PAS-DFS or
PAS-DFS-PRUNED. However, we can clearly see that when
budgets approach the cost of the optimal solution, PAS-DFS
is in many cases unable to find a solution in a reasonable
time, whereas PAS-DFS-PRUNED is able to find a solution,
but takes far longer than any of the PAS-A∗ algorithms.
These results clearly show that PAS-A∗ and its variants are
far superior to the baseline approach.

The final experiment investigates how the attacker’s skill-
level affects the solution. The initial budget for all attackers
is set to the size of their optimal solution as determined from
previous experiments. To model attackers with different skill-
levels, we multiply their initial budget by an associated factor:
1 for low skill, 2 for medium skill, and 3 for highly skilled.
The results (Table II) suggest that attackers need to have a
medium skill-level at the very least, in order to compromise
the system. This also makes sense intuitively, as we expect
attackers with greater expertise to be able to exploit more-
complex vulnerabilities.

Attacker Type Low skill Medium skill High skill
Remote None 20 (|E′| = 10) 20 (|E′| = 10)
Remote authenticated None 16 (|E′| = 8) 16 (|E′| = 8)
Physically proximate None 15 (|E′| = 9) 15 (|E′| = 9)
Local None 11 (|E′| = 7) 11 (|E′| = 7)

TABLE II: Solution costs and sizes for attackers of different skill-
levels.

V. RELATED WORK

There has been previous work that studied the problem of
sequential attack-sequences using exploit preconditions and
postconditions. However, the approach in this paper offers
several advantages. First, our approach differs from [1], [4]
in that it returns a constructive result by providing actual
attack-sequences. Second, we have shown that queries can
be answered efficiently, which is a favorable advantage over
more computationally-intensive approaches [1]–[5]. Third, our
approach does not require generating explicit attack-graphs
or the enumeration of all-possible attack scenarios, which
again makes it far less computationally-intensive compared
to approaches that do [2]–[5]. We also note that while there
are approaches [8], [14] that use scalable attack-graph gen-
eration techniques [10], our approach still offers advantages.
In [14] impact-assessments are done on a per-scenario basis,
and a comprehensive assessment would require enumerating
over all-possible attack scenarios. Whereas in [8], identifying
possible attack-sequences requires a breadth-first traversal of
the attack-graph, which in the case of large, or poorly-secured
networks, can be memory intensive; in comparison, we use A∗

search with an efficient heuristic, and also leverage fixed-point
operator results to prune the search tree, making our approach
less resource-intensive. Finally, we note that in contrast to
domain-specific approaches that focus on specific situations,
such as attacks on smart grids [1] or web applications [5], our
approach is general and can be applied to multiple situations,
including networked systems.



VI. CONCLUSION

In this paper, we developed a framework for modeling
sequential-cyberattacks based on vulnerability dependencies.
We showed that the attacker’s obtained set of capabilities
corresponds precisely with the result of a fixed-point com-
putation, and that an actual attack-strategy can be computed
efficiently via an A∗-based approach, using heuristics that we
have developed. Results presented in this paper demonstrate
that our model and its algorithms are viable in practice,
and that solutions can be easily interpreted according to an
intuitive, real-world understanding of attacker behavior. In the
future, we intend to augment the selection of vulnerabilities
by considering external sources of information, such as the
darkweb, and investigate methods to automatically generate
capability-sets from CVE descriptions and other sources of
information, such as Metasploit modules.
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